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EXCITATION OF TOLLMIEN--SCHLICHTING WAVES IN THE BOUNDARY LAYER 

BY THE VIBRATING SURFACE OF AN INFINITE SPAN DELTA WING 

A. M. Tumin UDC 532.526.013 

The problem of instability wave origination (Tollmien-Schlichting waves) is discussed 
extensively at this time in connection with the solution of the problem of predicting the 
laminar-to-turbulent boundary layer transition point [i, 2]. The problem of exciting Toll- 
mlen-Schlichting waves is considered in [3] in the case of a two-dimensional boundary layer 
on a vibrating surface. This paper is devoted to the solution of the problem [3] in the case 
of spatial perturbations in the boundary layer in the vibrating surface of an infinite span 
delta wing. 

1. FORMULATION OF THE PROBLEM 

Let us consider the flow in the boundary layer on an infinite span delta wing. We 
select as coordinate system: x is the distance from the leading edge along the streamlined 
surface, y is the distance along its normal, and the Oz axis is along the wlng leading edge. 
We write the Navier-Stokes equations in dimensionless form by using a certain length scale 
l, and the free stream velocity Uo. We measure the time in the units I/Uo, the pressure is 
referred to poU~ (Po is the density in the free stream). The temperature and the viscosity 
coefficient are also measured in units of the corresponding quantities in the free stream. 
As in [4], we assume that the fundamental flow is weakly inhomogeneous in the absence of 
perturbations. The following dependence on the coordinates is assumed for the velocity com- 
ponents (U, V, W) and the pressure and temperature (p, T): 

u = u(x,, y) ,  v =  ~v,(~,  y), w =  w(x~, y), (1.1) 
p = p ( x l ) ,  T = T ( x , , y  ), x l=~x ,  z<<i. 
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We assume the viscosity coefficient dependent only on the temperature. We write the linear- 
ized Navier--Stokes equations with the equation of state taken into account after a Fourier 
transformation in the time, in the form 

0 OA 1 ~ -Tf'z + eH4A' (i. 2) 

where Lo, Lx, Hi, Ha, Ha, H4 are 16 x 16 matrices with Lt independent of y. All the com- 
ponents containing the derivatives of the fundamental flow functions with respect to xt and 
the velocity component V, from (i.i) are isolated in the matrix~ H4. The vector function A 
in (1.2) is defined as follows in terms of the perturbation: At is the x component of the 
velocity; A2 = 3At/By; Aa is the y component of the velocity, A~ is the pressure, A~ is the 
temperature, Ae = ~A=/By; A7 is the z component of the velocity, As = OA~/OU; A, OA~/Ox; 
Ato = OAs/OX; A t , =  OAflOx; A,~ = OAflOx; A,s  OA,/Oz; A,~ =OAfloz; A x e =  OAflOz; A,~ = OA*IOZ~ 
We assume that initlal data are given in a certain section x = xo In the form of the vector 
functions 

A(xo, Y, z) = Ao(y) exp (i~z). ( 1 . 3 )  

We simulate the vibration of the streamlined surface on the section being analyzed as a small- 
amplitude traveling wave. For the considered Fourier harmonic in time with the frequency 
we represent the equation of the surface y(x, z) in the form 

y = a exp [i=o(x - -  Xo) + i~z]. 

Analogously to [3], we arrive at the following boundary conditions for y = 0: 

( z ,  0 ,  z )  ' �9 = --  aU~ exp [ia o (x - -  Xo) + i~z], 

A,  (z, O, z) = - -  i~a exp [i~o (x --  Xo) + i~z], ( 1 . 4 )  

A~ (x, O, z) = O, A~ (x, O, z) = - -  aW~ exp [i~0 (x - -  Xo) + i~z], 

w h e r e  U~, W~ a r e  t h e  v a l u e s  o f  t h e  d e r i v a t i v e s  o f  g and  W w i t h  r e s p e c t  t o  y ,  e v a l u a t e d  a t  
y = 0 .  The t e r m s  O ( a a )  a r e  d i s c a r d e d  i n  ( 1 . 4 ) .  B o u n d e d n e s s  o f  t h e  s o l u t i o n  i s  a s s u m e d  a s  
y + ~:  . . . . . . . . . . . .  

IAyl  < co (1 = 1 . . . . .  t6) .  (1.5) 

The problem (1.2)-(1.5) is incorrect. Hence, we impose the condition on the initial 
data that they allow a solution with a finite index of growth [3]. 

2. BIORTHOGONAL VECTOR SYSTEM 

The solution of the problem (1.2)-(1.5) for the case when the fundamental flow is weakly 
inhomogeneous in the coordinate x is represented in the form of an expansion in a biorthog- 
onal system of vectors of the locally homogeneous problem {A=~(x I, Y), B=~(xt, Y)} [3]. The 
general principles for the construdtion of a biorthogonal system for three-dimensional bound- 
ary layers are formulated in [i]. Given below are specific equations [i]: 

L P 

A=~I = A = ~ a  = A = ~ 5  = A = ~  = 0  for Y = 0 ,  ( 2 . 1 )  

IA=~jI < oo for y - +  co (] = ]., . . . ,  t6) ;  
OB~ ~ OB~ . -  , 

0"-'~ ov ] "-~-v - -  ( 2 . 2 )  
B=~  = B = ~  4 _ B ~ s  =Bc,~s  = 0  for y = 0 ,  

IB~ ,Bs l<oo  for Y - " ~ 1 7 6  (] = ~  . . . . .  i6) ,  

where the asterisk * denotes the conjugate matrix, the upper bar denotes the complex conju- 
gate, and the subscripts a and fl denote whether the vector functions belong to the solution 
of problems (2.1) and (2.2) for given parameters at and ft. The systems (2.1) and (2.2) de- 
pend on the "slow'.' coordinate xz as on aparameter. The equations for the first eight com- 
ponents in (2.1) and (2.2) are split off, They define the rest uniquely, For givenvalues of the 
frequency ~ and the parameter ~ the problems (2,1) and (2.2) have a discrete and continuous spec- 
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trum of allowable values of the parameter a. This analysis is analogous t o  [5] for two-  
dimensional boundary layers. The thrae-dimenslonallty of the fundamental flow and the per- 
turbations does not yield any distinctions, in principle, from [5]. The following orthog- 
onality conditions hold [i]: 

where ~ > O; Aa7 is the Kronecker symbol i f  one of the numbers a, ~ is referred to the dis- 
crete spectrum, A~ =~(~--~) is the delta function if both numbers a, 7 are referred to 
the continuous spectrum. 

If z(xt, y) denotes a vector consisting of the first eight components of the vector 
Au~ , then the problem (2.1) can be reduced to a well-known system of the Lees-Lin type [4]: 

dz/dy =H0z, zx =Zs =ze =z~ =0 for  y =0, ( 2 . 3 )  

[ z A < ~ 1 7 6  for y : -~oo q = i ,  . . . .  8), 

where  Ho i s  a 8 • 8 m a t r i x .  The s p e c i f i c  form o f  Ho i s  p r e s e n t e d  i n  [ 4 ] ,  f o r  example .  The 
sys t em (2 .3 )  has  e i g h t  l i n e a r l y  i n d e p e n d e n t  s o l u t i o n s .  S e t t i n g  t h e  d e r i v a t i v e s  o f  t he  f u n -  
damen ta l  flow functions with respect to the coordinate y equal to zero outside the boundary 
layer, we obtain a system of ordinary dlfferential equations with constant coefficients [6]. 
Seeking its solution -~exp (%y) , we obtain the characteristic equation for A: 

(b n - -  Xs) = [(b~ - -  X=)(b88 - -  X 2) - -  b=sbs= ] = 0, '. 
= TJ'a2g/24 ~.y43~r84 46 64 -I-  [-T48~ 84 b**=H~ x, b~ " o " o  +~*o '*o  +Hollo ( 2 . 4 )  

where He ij are elements ofthe matrix He evaluated outside the boundary layer. Equation (2.4) 
has two doubly degenerate roots Zx = ~x, Z, =--~i. We denote the two linearly independent 
vectors corresponding to At by Vx and VT. Their components different from zero +are 

V ,=(HI'AOe 
where Vi~ denotes the i-th component of the J-th vector. We denote the two linearly inde- 
pendent w corresponding to A= by V2 and V,. Moreover, (2.4) has two roots As, ~: 

%3,4 = +{(t/2)(b~, + bss) + ] / ( i /4)(b, ,  - -  bas) 2 + b,  bs,}V*. 
We d e n o t e  t h e i r  c o r r e s p o n d i n g  l i n e a r l y  i n d e p e n d e n t  s o l u t i o n s  by Ys and V~. The r e m a i n i n g  
roots ~ )  ~,e' are determined by the inequality 

~,~,e = "r {(t/2)(bs~ + b~0 - -  VCt/4)(b** -- b~) ~ + b,~bs,} ~/~. 

The linearly independent solutions Vs and. Ve correspond to them. For definiteness we select 
the branches Real %1 < 0, Real %s < 0, Real %+5 < 0. Tollmien--Schlichting waves correspond to 
solutions of the discrete spectrum. We denote the solution of (2.3) for them by zTS: 

zzs = C,V, + caVs + c J ~  + c~V~. ( 2 . 5 )  

One of the coefficients in (2.5) is arbitrary because of the llnearity of the problem. The 
rest are determined from the boundary conditions for y = 0. Here aTS is determined from 
the dispersion relationship (the subscript TS denotes belonging to the discrete spectrum): 

Eros, (~TS) = det 

Vxx V-3 V15 . Vv;, ] �9 

1 
V .  V .  V65 V57 I V+, V n V+5 V+71u= o 

= 0 .  

To construct the solution of the problem (1.2)-(1.5) in the form of an expansion in 
the eigenvectors Aa~ later, we construct the vector Av(Xt , y) analogously to [3]: 

0 f 0Av \ 0Av 
�9 ~ ~ Lo --~-y) + La-~ = H1A ~ + i~oH~Av + i~HsA~, 

A~x=--aU'w, A~a=--iao, Avs=O, A~7=--aW" for y = O ,  

672 



IA~;I--* 0 fo~ U --'- ~o (] = i , . . . ,  ~6). 

We let zo denote a vector consisting of the first eight components of A v. It can be 
written in the form 

z~ = a(dlVl q- d3Vs q- dsVs q- d~V~)/E1357(=o), 

where the coefficients dj are determined from the boundary conditions for y ffi O. The vector 
z v depends on xz as on a parameter. We note that if there is a resonance point xx = x, at 
which uTS ffi ao, then z v has a pole. 

3. GENERATION OF TOLLMIEN-SCHLICHTING WAVES 

We seek the solution of the problem (1.2)-(1.5) in the form 

/ x } 
A (x, y, z) = ~"  c~ (xl) A ~  (xl, y) exp i ~ ~dx "4- i~z ~- A~ Cxl, y) exp {~o (x - xo) -+- i~z}, (3.  l )  

[ X o 

where the ~.' denotes sunnnation over the discrete and integration over the continuous spec- 
trum. Limiting ourselves to the examination of only components with A v and ATS in (3.1) and 
repeating the calculations [3], we find the coefficient CTs(Xl) and we see that the solutlon 
(3.1) is uniformly sultable in x. Using the saddle-polnt method [7] here, we find the ampli- 
tude of the Tollmlen--Schllchting wave excited in the neighborhood of the resonance point xl ffi 
x,, where aTS(X,) ffi uo. If we are interested in a specific physlcal quantity q (the ampli- 
tude of the fluctuations in velocity, temperature, or mass flow rate, etc.) in the excited 
wave, then its value Cq has the form: 

where the quantity q is determined in terms of the components of the vector ATS. The vec- 
tors ATS , BTS in (3.2) are determined from (2.1) and (2.2) for B from (1.3). It can be 
shown by quite tedious calculations that 

//OH o > 
<H2ATs, nws> -- - -  i ~O-~T ~ zws, Zws -]- 0 (Re-l), 

where Re is the Reynolds number and ~TS is the solution of the adJoint problem 

d~/dy= --Hoz, Z~=Z4-- Ze,=Zs----O for y = O ,  (3.3) 

4. EXAMPLE OF A NUMERICAL COMPUTATION 

Considered as an illustration in this paper is the symmetric profile NACA 0012 at zero 
angle of attack, for which the sweepback angle ~c =30~ is given. The chord length was se- 
lected at 1.5 m, the free stream pressure and temperature were I0 ~ N/m z and 300~ respec- 
tlvely, and the Math number was M = 0.28. The coefficient of viscosity was assumed depen- 
dent on the temperature according to the Sutherland formula. The Prandtl number was 0.72. 
The boundary layer calculation was excuted within the framework of a locally self-slm/lar 
approximation [8]. Linearly independent solutions for systems of dlfferentlal equations 
(2.3) and (3.3) were found numerically by using an orthogonalizatlon method [9, 6]. The 
dependence of the amplitudes of the maximal value of the mass flow rate for the x and z 
components of the Tollmierr-Schlichtlng waves (curves 1 and 2, respectively) is represented 
in Fig. 1 as a function of the angle $ =arctg (~/~) in the case of a resonance ex- 
citation regime for a 500-Hz pertubation frequency. Numerlcalvalues of the amplitude of the 
surface vibrations are presented in dimensional form per 1 m. From the results presented 
in the figure, there follows that the value ~10 -6 m of the vibration amplitude yields a 
~1% fluctuation amplitude in the unstable zone in the case of the resonance regime of Toll- 
mlen--Schlichtlng wave excitation. 
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STRUCTURES AND THEIR EVOLUTION IN A TURBULENT SHEAR LAYER 

G. A. Kuz'min, O. A. Likhachev, 
and A. Z. Patashinskii 

UDC 532.517.4 

i. INTRODUCTION 

From the mathematical viewpoint, turbulent fluid motion is represented by~the result of 
excitingmany strongly interacting degrees of freedom. In the motion of these degrees of 
freedom there is hence neither total chaos (which would permit utilization of simple statis- 
tical models), nor total coherence. Recent investigations (see e.g., [1-3]) make the idea 
that many turbulent flows are a system of interacting and quite stable wave packets, vortex 
structures, all the more likely. The spatial separateness often observed for the struc- 
tures indicates that their interaction does not annihilate the possibility of considering a 
structure as a certain "unit" of turbulence. 

There is apparently no single mechanism for the formation of structures in different 
turbulent flows. The widely known dissipative structures are represented by the combined 
product of nonlinearity and dissipation. For instance, Benard cells in convective flows 
and Taylor vortices in circular Couette flows originate and exist in a limited range of non- 
linearity-to-dissipation ratios. In free turbulent flows, jets, wakes, and in mixing layers 
the dissipation plays no visible part in structure formation. It can be assumed that cer- 
tain local integrals of motion are responsible for the existence of structures in these ef- 
fectively nonviscous flows. The prolonged existence of structures naturally results in the 
idea of building up an internal statistical equilibrium therein [4-6]. As has been shown in 
[7, 8], isolated statistically equilibrium structures from two-dimensional point vortices 
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